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Diffusion in a periodically driven damped and undamped pendulum
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We study the diffusion process in a periodically driven damped and undamped pendulum. The effect of
angular frequencyv of the external periodic force on the diffusion process is investigated. We show the
occurrence of normal and anomalous diffusions in the undamped system. In the presence of damping, normal
chaotic diffusion is found. Near certain bifurcation points, the phase velocity is found to be intermittent and the
diffusion coefficient is found to exhibit power-law divergence. We argue that the divergence of the diffusion
coefficient near the bifurcation points is similar to that of the average laminar lengths near them. The effect of
bias on the dynamics is also discussed.
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I. INTRODUCTION

The diffusion process is usually broadly classified as n
mal and anomalous. The characteristic of diffusion is ba
on the time evolution of the mean-square displacem
^R2(t)&;tm. If m51, the process is called normal and ifm
Þ1, the process is called anomalous. The anomalous d
sion process can further be categorized into sub~linear! dif-
fusion whenm,1 and super~linear! diffusion or enhanced
diffusion whenm.1. See Refs.@1–4# for an exhaustive re-
view of normal and anomalous diffusion processes. Anom
lous diffusion is of basic interest in several problems such
mass transport and mixing in hydrodynamic flows@5–7#,
transport of magnetic field lines, and heat and particles
fusion and space plasmas@8–10# to name only a few. Of late
there has been a growing interest in the diffusion proper
of chaotic systems. There have been several studies dev
to normal and anomalous diffusion in maps and continu
time systems@11–13#. Anomalous diffusion is found to occu
in several conservative systems, especially, when the dom
of chaotic motion has accelerator modes or when stocha
layers form near the unperturbed separatrix. For exampl
has been found in a model of electrostatic turbulent plas
@14# and in certain Hamiltonian systems and maps@15–20#.
In these systems, an orbit gets trapped in the acceler
modes resulting in ballistic motion during these trapp
times and moves chaotically otherwise. The combination
this regular and chaotic motion leads to anomalous~non-
Brownian! diffusion. In this paper, we shall focus attentio
on diffusion in the driven damped and undamped class
pendulum equation. The driven damped pendulum is a c
sical nonlinear system that is used to model many phys
phenomena such as charge-density wave transport and
frequency driven Josephson junction. Recently, diffus
process has been studied in a damped and periodically dr
pendulum@21–23#. Superdiffusion in an equivalent equatio
was studied by Latoraet al. @24#. The equation of motion of
a sinusoidally forced, damped pendulum with constant b
is given by

ü1gu̇1sinu5 f sin~vt !1p. ~1!
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One can view the motion of the pendulum bob about
pivot as an evolving trajectory in the phase plane (u,u̇). The
dynamics of the system~1! for p50 has been studied by
number of authors@21,22#. For certain range of values of th
parameters the evolution of the phase variableu shows ex-
pansion behavior characteristic of classicial diffusion. T
diffusion properties of the pendulum equation were stud
by Blackburn and Jensen@21#, where the diffusion was cal
culated as a function ofg. It was found by them that the
diffusion coefficient exhibits a power-law divergenc
ug2gcu21/2, outside a periodic window ofg. Popescuet al.
@22# considered the system~1! with disorder substrate an
p50. They added, quenched disorderaj(u) to the right side
of Eq. ~1!, wherea is the amount of quenched disorder a
the random variablej(u)P@21,1# obeys

^j~u!&50, ^j~u!j~u8!&5d~u,u8!. ~2!

They found that the diffusion coefficient increases with t
strength of disordera, when a is small. However, when
disorder strength is very high, the diffusion coefficient b
comes very small. More recently, Yevtushenko, Flach, a
Richter@23# reported on the dependence of mean velocity
the phase of the periodic driving force in the undamped s
tem. Directed current due to broken time-space symme
was also reported in Ref.@25#. In the present paper, we stud
the diffusion in Eq.~1! with ~i! p50, g50 and ~ii ! p50,
gÞ0. We focus on the effect of the parametersv. Wheng
50 and p50, the system exhibits normal and anomalo
diffusion depending upon the values off and v. The diffu-
sion process is characterized using various statistical des
tors. We also investigate the damped pendulum by set
g50.2, f 51.2, p50, and varyingv. Diffusion, when it
occurs is found to be normal in the damped system.
present results on the variation of diffusion coefficient ne
two bifurcation pointsv1 andv2 shown in Fig. 5. We show
power-law divergence of the diffusion coefficient as the co
trol parameterv is varied near these bifurcations. We al
study the diffusion behavior near a bifurcation leading to
crisis induced intermittency. Finally, we study the effect
the constant biasp on the dynamical evolution.
©2002 The American Physical Society14-1
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FIG. 1. Poincare´ map of Eq.
~1! for p50, g50, and f 51.2.
~a! v50.8.~b! v50.1. The points
on the Poincare´ map are sampled
once every drive period with
phase f50 for ~a! and f
50.25v for ~b!.
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II. DIFFUSION IN THE CONSERVATIVE SYSTEM
„gÄ0, pÄ0…

For f 5g5p50, the system has two equilibrium point

(u* ,u̇* )5(0,0), which is an elliptic point and the joining o
the two branches of the seperatrix at (6p,0), which is a
hyperbolic point. For nonzero values of these parameter
is not possible to obtain analytical solutions and one
forced to take recourse to the numerical evaluation of
trajectories. For the generation of the numerical trajectorie
fourth-order fixed time step Runge-Kutta integrator w
used. All the calculations were carried out in double pre
sion arithmetic. An optimum choice of 100 time steps p
drive cycle was found to give satisfactory results for calc
lating statistical quantities such as the diffusion coefficie
This choice of the time step was used in the case of dam
system. For the undamped system, however, we use
smaller value, 5000 time steps per drive cycle@26#. Figure
1~a! shows the Poincare´ map for g50, p50, f 51.2, and
v50.8. The Poincare´ map is plotted by sampling the trajec
tory once per drive cycle. In Fig. 1~a!, orbits for three differ-
ent initial conditions are shown. The upper and lower orb
are quasiperiodic, while the middle one is chaotic. The
celerator islands are clearly visible. The phase plot for
casev50.1 is shown in Fig. 1~b!. The difference in the
nature of the distribution of points contribute to the differe
diffusion behavior. Forv50.8, both laminar and chaoti
flows can be seen in Fig. 2~a!. When the trajectory spends
long duration of time on a stochastic layer the phase velo
u̇ appears laminar. In Fig. 2~b!, in the laminar regions where
u̇ is nearly constant, the phase variableu increases or de
creases linearly. After escape from a stochastic layer the
jectory wanders chaotically. In the bursting region, the ph
velocity u̇ rapidly oscillates. The combination of these tw
motions lead to anomalous diffusion. To identify and char
terize the nature of diffusion in the system Eq.~1!, we cal-
culated various statistical quantities. The mean-square
placement̂ u2(n)&, was calculated by averaging over 152
initial conditions chosen around the origin (u50,u̇50) of
the phase space. Figure 3 depicts the variation of^u2(n)& as
a function ofn, the number of drive cycles, forv50.8 and
v50.1. The data points for both the values ofv in the
log-log plot asymptotically fall on straight lines implying th
relation
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^u2~n!&;nm, n→`. ~3!

For v50.8, the exponentm is found to be 1.6, which implies
that the diffusion process is anomalous, and superlinear.
v50.1, the exponentm is evaluated by a least squares fit f
n.500. m is unity and hence asymptotically the diffusion
normal. A simple way to check whether a one-dimensio
random variableu with zero mean is Gaussian or not is
calculate the magnitude of the fourth cumulant

C45^u4&23^u2&2. ~4!

FIG. 2. Phase variablesu ~a! and u̇ ~b! for a trajectory started
near the origin forv50.8, g50, p50, and f 51.2. The linear

motion of u during the laminar phases ofu̇ is evident.
4-2
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FIG. 3. Diffusion for the case
of Fig. 1. ~a! v50.8. The diffu-
sion is anomalous withm51.6.
~b! v50.1. The diffusion is nor-
mal asymptotically. The dashe
line is the least squares fit forn
between 500 and 1000. The expo
nentm is nearly unity.
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For Gaussian process,C4 and other higher-order cumulan
vanish. Deviation from Gaussian process can be measure
evaluating the kurtosis

K5
^u4&

^u2&2
. ~5!

When the diffusion is Gaussian the value of kurtosis is
pected to be nearly 3. Figure 4 shows the variation ofK for
v50.1 andv50.8, respectively. Forv50.1, K is found to
be nearly 3 for largen confirming normal diffusion. Forv
50.8, K diverges rapidly withn implying deviation from
Gaussian statistics.

III. DIFFUSION IN THE DAMPED AND PERIODICALLY
DRIVEN SYSTEM „pÄ0,gÅ0…

In this section, we consider the system~1! in the presence
of damping withp50, f 51.2, andg50.2, and study the
diffusion process by varying the angular frequencyv of the
04621
by
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external force. The periodic orbits of the system~in the phase
variable u̇) are either running or nonrunning, depending
the value of the parameterv. A typical running orbit shows
expansion of the phase variableu with time, while a nonrun-
ning orbit does not.

First, we consider chaotic diffusion resulting from the b
furcation of a running periodic orbit. Figure 5 shows th
bifurcation diagram forvP(0.471,0.477). Asv is decreased
there is a sequence of period doubling bifurcations. At
accumulation point of these bifurcations,v150.473 15 . . . ,
the attractor suddenly widens. The region to the left of t
point is interesting. A typical trajectory in this region ofv

exhibits a succession of laminar regions inu̇ interrupted by
chaotic bursts. In fact, there are two laminar regions and
each of these regions, the phase variableu is linear. While on
one of theseu increases, on the otheru decreases. During the
chaotic bursts, the net displacement is small. Figures~a!
and 6~b! show the laminar and chaotic regions forv
50.473 147 5, which is close tov1. Figure 6~a! shows the
variation ofu on the Poincare´ surface. The evolution ofu̇ on
FIG. 4. Kurtosis for the undamped driven pendulum. Forv50.8 exhibiting anolamous diffusionK diverges~dotted line!, and forv
50.1 exhibiting normal diffusionK is nearly 3~solid line!.
4-3
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FIG. 5. Bifurcation diagram of the system~1! for vP(0.471,0.477). The period 1 orbit suddenly becomes chaotic av
50.476 571 . . . . There is a sequence of period doubling bifurcations asv is decreased. The attractor suddenly widens atv
50.473 15 . . . .
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the Poincare´ section is shown in Fig. 6~b!. The correspon-
dence between the laminar regions ofu̇ in Fig. 6~b! and the
ballistic motion ofu in Fig. 6~a! is clear. The diffusion co-
efficient D is defined by

D5 lim
n→`

1

n
^u2~n!&. ~6!

D is calculated by evolving 2600 trajectories with initial co
ditions around the origin for 2000 drive cycles in the regi
vP(0.471 25,0.473 14). The nature of diffusion is found
be normal. Forv close to the critical points, longer trajecto
ries are required for observing normal diffusion. Figure 7~a!
shows the linear evolution of the mean-square displacem
for v50.473 14. The contribution to the diffusion is prim
rily due to the ballistic motion in the laminar regions. Th
burst regions contribute only minimally. The diffusion coe
ficient D exhibits a power-law divergenceD;uv2v1u2a

with a50.492 and is shown in Fig. 7~b!. As v is increased
through the periodic window, the motion becomes sudde
chaotic atv250.476 571 . . . . After this bifurcation point,
the behavior is somewhat similar to that found for Fig.
There are two distinct laminar regions in which the motion
ballistic. The laminar regions and chaotic bursts are show
Figs. 8~a! and 8~b!. Normal diffusion at v50.476 58 is
shown in Fig. 9~a! and the power-law divergence of the di
fusion coefficient in the regionvP(0.476 58,0.476 70) is
shown in Fig. 9~b!. The exponenta, in this case is 0.483
The value of the exponent seems to be 1/2. Several sim
bifurcations lead to divergence of the diffusion coefficie
with the same exponent. For example, forg50.15, f 51.2,
p50, andv50.489 856 . . . , wefound the value of the ex
ponent to be 0.526. At the same parameters but withv
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50.492 884 86 . . . , wefound the value of the exponent to b
0.48. Blackburn and Jensen@21# also found that the exponen
is 1/2 in their studies.

We studied the variation of diffusion coefficient just aft
another type of bifurcation called the crisis induced interm
tent switching between two chaotic orbits. This type of b
furcation was studied by Grebogiet al. @27# in the system

ü1gu̇1sinu5 f cos~vt !. ~7!

In this type of intermittency, there exist two attractors, o
with u̇,0 on the average and another withu̇.0 on the
average with their respective basins of attraction. That
existence of one attractor implies the existence of the o
follows from the symmetry of the equation. Letf c be the
bifurcation point. Forf , f c , the orbit is in one of the attrac
tors depending on which basin of attraction the initial con
tion was in. Afterf crossesf c , the two basins of attraction
merge and form a single large attractor. The orbit th
switches between the two attractors chaotically. That is,
system exhibits

~chaos!1→~chaos!2→~chaos!1→~chaos!2→•••

transition @27#. They showed that the mean time betwe
switching as a function off 2 f c is power law, where the
exponent is given in terms of the expanding and contrac
eigenvalues. We found that the diffusion is normal and
termined the diffusion coefficient for this system (v51.0,
g50.22, p50, f c52.646 442) as a function off 2 f c @28#.
The diffusion coefficient was calculated in the regionf
P(2.646 53,2.69). The divergence of the diffusion coe
4-4
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DIFFUSION IN A PERIODICALLY DRIVEN DAMPED . . . PHYSICAL REVIEW E65 046214
cient is power law with the exponent 0.699. Intermitten
and divergence of the diffusion coefficient for this case
shown in Fig. 10.

We wish to find a possible explanation for the value of t
exponent 1/2 for the diffusion near the bifurcation valu
v1,2. Figure 6 showsu(n), u̇(n) for v50.473 147 5 near

FIG. 6. Intermittency near the bifurcation atv50.473 15 . . . .
~a! The evolution of the phase variableu on the Poincare´ surface at
v50.473 147 5.~b! The phase velocity on the Poincare´ surface.
The linear evolution and small chaotic oscillations ofu in ~a! cor-
respond to the laminar regions and the burst regions, respective
~b!.
04621
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v1. The trajectory spends long time intervals in the regio
whereu̇(n) is nearly constant on the Poincare´ map, akin to
the laminar regions, interrupted by bursts. In these regio
the trajectory is linear as seen in Fig. 6~a!. In the bursting
regions u̇ fluctuates rapidly giving rise to small amplitud
motion ofu. Consequently, the displacement in these regi

in

FIG. 8. Intermittency near the bifurcation point atv
50.476 571 . . . . ~a! The evolution of the phase variableu on the
Poincare´ surface atv50.476572.~b! The phase velocity on the
Poincare´ surface. The linear evolution and small chaotic oscillatio
of u in ~a! correspond to the laminar regions and the burst regio
respectively, in~b!. The linearly increasing and decreasing values
u correspond to the two distinct laminar regions as seen in~b!.
-

-
s

FIG. 7. ~a! Mean-square dis-
placement showing normal diffu
sion for v50.473 14. ~b! Diffu-
sion coefficient near the
bifurcation point showing power-
law behavior for v
P(0.471 25,0.473 14). Circles
represent the numerically evalu
ated values and the solid line i
the least squares fit.
4-5
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FIG. 9. ~a! Mean-square dis-
placement showing normal diffu
sion for v50.476 58.~b! The dif-
fusion coefficient near the
bifurcation showing power law.
Circles represent numerically
evaluated values and the solid lin
is the least squares fit.
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is much smaller as compared to those in the laminar regi
When v is decreased, the average length of the regi

whereu̇ is laminar decreases and diffusion slows down.
have found numerically that the average laminar length n
the critical point v1 exhibits power-law divergencêl &
;uv12vu2a with a50.437 as seen in Fig. 11~b!. The lami-
nar lengthl is found to be random with exponential distrib
tion see Fig. 11~a!. The distribution is obtained by collectin
successive laminar lengths for a long orbit and binning th
appropriately. The log-linear plot exhibiting linear behavi
is taken as the signature of the exponential distribution.

Let us consider the process close to the critical point. T
evolution ofu as a function of time is dominated by lamin
regions interrupted by chaotic bursts. The change inu during
a chaotic burst is small compared to that during a lami
region. Hence, neglecting the small displacements in
burst regions, the net displacement ofu in time n can be
written as a sum of the displacementsz i in the laminar re-
gions of lengthl i ,

u~n!5(
i 51

N

z i~ l i !, ~8!

whereN is the number of laminar regions between time ze
andn. z i are the independent random displacements that
positive and negative values with equal probability. T
mean-square displacement^u2& can, therefore, be written a
04621
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^u2~n!&5N^z2&, ~9!

where^z2& is the mean-square displacement per step. In
laminar regions,u̇ is nearly constant on the Poincare´ surface.
Figure 6 shows the two laminar regions and the correspo
ing linear motion ofu. The two laminar regions are sym
metrical leading to zero average velocity, which is not e
dent in the figure due to the choice of the Poincare´ surface.
Hence,z i;ali , z i

2;a2l i
2 . The quantitya represents the av

erage velocity in the laminar regions and can take value
the same magnitude and opposite signs in the two diffe
regions. The problem of determining the mean-square
placement, therefore, reduces to determining the me
square laminar length@29#. Since, the laminar length has a
exponential distribution, the probability for finding lamina
regions of length betweenl and l 1dl can then be written as
(1/̂ l &)exp(2l/^l&), where^ l & is the average laminar length
The factor 1/̂l & provides the correct normalization. Th
mean-square laminar length can be then written as

^ l 2&5
1

^ l &E0

`

l 2expS 2
l

^ l & Ddl52^ l &2. ~10!

Hence,^z2&;^ l 2&52^ l &2. In time n, the number of laminar
lengths isN5n/^ l &. Substituting this in Eq.~9!, we get

^u2~n!&;^ l &n. ~11!

The above implies that the diffusion coefficient is propo
tional to the mean laminar length.
-

-
s

FIG. 10. Crisis induced inter-
mittency in the damped driven
pendulum for the parametersv
51, g50.22, andp50. ~a! Inter-
mittency for f 52.655. ~b! Diffu-
sion coefficient near the bifurca
tion point showing power-law
behavior. D is calculated in the
range f 5(2.646 53,2.69). Circles
represent the numerically evalu
ated values and the solid line i
the least squares fit.
4-6
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DIFFUSION IN A PERIODICALLY DRIVEN DAMPED . . . PHYSICAL REVIEW E65 046214
FIG. 11. Distribution~a! and divergence~b! of laminar lengths for the damped driven pendulum withp50, f 51.2, andg50.2. The
distribution is obtained by binning 2185 laminar lengths in bins of width 5 drive cycles after removing ‘‘laminar’’ regions of very
lengths. The linearity on the log-linear plot indicates that the distribution is exponential. The divergence of the laminar lengths is po
with exponent 0.437.
c

t i
e
ow
te
w

nd
l-
he
ra

age
nt

u-
he
ilar

ia-
tic

ity
The mean laminar length exhibits power-law divergen
near the critical points ofv as shown in Fig. 7~b! and Fig.
9~b!. We have observed numerically that the exponenta in
the power law is nearly 1/2. In this connection we add tha
many systems near such bifurcation points the mean valu
state variables and maximal Lyapunov exponent have sh
similar power-law dependence on a control parame
@30,31#. This also is probably the reason for the power-la
divergence~with exponent 1/2) observed by Blackburn a
Jensen@21#. If we are away from the critical points, the ba
listic motion in the laminar regions and the motion in t
chaotic burst regions become comparable and the above
dom walk arguments do not hold good any more.
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In the case of the crisis induced intermittency, the aver
laminar length exhibits power-law divergence with expone
0.702 @27#. We have found that the laminar length distrib
tion is exponential. As in the previous case, by invoking t
random walk argument, it is reasonable to expect sim
divergence for the diffusion coefficient.

Now, we consider the pendulum equation~1! with bias,
pÞ0. For the choice of parametersf 51.2, g50.2, v
50.4769, andp50, the system is periodic. ForpÞ0, the
system loses its periodicity. The resulting bifurcation d
gram is shown in Fig. 12. The system is alternately chao
and periodic with increasingp, chaoticity emerging through
a series of period doubling bifurcations. The phase veloc
-

e-

d
-
t
y

FIG. 12. Bifurcation diagram
for the damped driven pendulum
with bias,v50.4769, f 51.2, and
g50.2. The periodic state that ex
ists for p50 loses its periodicity
and becomes chaotic. Subs
quently for higher values ofp,
there is a sequence of chaotic an
periodic regions. The chaotic re
gion contain a single intermitten
region where the motion is nearl
linear.
4-7
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exhibits intermittency in the chaotic regions. In contrast
the intermittency shown earlier, for this case, there seem
be a single dominant intermittent region where the motion
nearly linear. The contribution to the motion during th

FIG. 13. Phase variables for the pendulum with biasp
50.1188,v50.4769, f 51.2, andg50.2. ~a! The motion is nearly

linear.~b! u̇ showing a single intermittent region causing the nea
linear behavior in~a!.
04621
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bursts is negligible as seen in Fig. 13. The effect of the b
on the intermittent region is shown in Fig. 14. Atv
50.473 11,g50.2, f 51.2, andp50, there exist two inter-
mittent regions as seen in Fig. 14~a!. When a small biasp
50.0005 is added, one of the two intermittent regions
destroyed as seen in Fig. 14~b!. Which of the two intermit-
tent regions gets destroyed depends on the sign of the bip.
Since, there exists only one intermittent region the motion
nearly ballistic.

IV. SUMMARY AND CONCLUSION

The driven damped pendulum is a classic example o
nonlinear oscillator, whose behavior represents a large c
of systems. We have studied diffusion process in this sys
and found both normal and anomalous diffusion. Divergen
of the diffusion coefficient is found near certain bifurcatio
points of v. The diffusion coefficient near these points a
shown to obey a power-law divegence with the exponent 1
Near a crisis induced intermittency also power-law div
gence of the diffusion coefficient is found. It has been sho
that the large values of the diffusion coefficients near
bifurcation points is due to the existence of two intermitte
regions. Further, the average lengths of these intermit
regions exhibit power-law divergence. It has been possibl
show through random walk arguments that the divergenc
the diffusion coefficient is similar to the divergence of th
average laminar lengths. The effect of the intermittent
gions in the case of the undamped pendulum is different
this case, the contribution to the diffusion is due to the c
otic oscillations. The presence of the accelerator modes
hances the diffusion leading to the anomalous behavior
the damped case, where two intermittent regions exist, h
ever, the contribution due to the chaotic oscillations is sm
as compared to that by the intermittent regions leading
normal diffusion. In the case with bias near a periodic w
dow, the periodicity is broken leading to a sequence of p
odic and chaotic behavior as the bias is varied. In th
cases, however, a single intermittent region exists leadin
of

f the bias.
FIG. 14. Effect of bias on the intermittency atf 51.2, v50.47311, andg50.2. The Poincare´ plots are generated for a phase shift
f50.3v to accentuate the two intermittent regions.~a! For p50, the two intermittent regions exist similar to that shown in Fig. 6.~b! For
p50.0005, one of the intermittent regions is destroyed. Which of the two intermittent regions gets destroyed depends on the sign o
The consequent motion of the phase variableu is nearly linear and not diffusive.
4-8
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nearly linear motion, which may be contrasted with the c
without bias, where two possibly symmetric intermittent r
gions exist leading to the appearance of normal diffusi
The effect of bias seems to destroy one of the two interm
tent regions producing nearly ballistic motion.
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