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Diffusion in a periodically driven damped and undamped pendulum
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We study the diffusion process in a periodically driven damped and undamped pendulum. The effect of
angular frequencyw of the external periodic force on the diffusion process is investigated. We show the
occurrence of normal and anomalous diffusions in the undamped system. In the presence of damping, normal
chaotic diffusion is found. Near certain bifurcation points, the phase velocity is found to be intermittent and the
diffusion coefficient is found to exhibit power-law divergence. We argue that the divergence of the diffusion
coefficient near the bifurcation points is similar to that of the average laminar lengths near them. The effect of
bias on the dynamics is also discussed.
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I. INTRODUCTION One can view the motion of the pendulum bob about the

pivot as an evolving trajectory in the phase plased)). The

The diffusion process is usually broadly classified as nordynamics of the systerfi) for p=0 has been studied by a
mal and anomalous. The characteristic of diffusion is base@umber of author§21,22. For certain range of values of the
on the time evolution of the mean-square displacemenparameters the evolution of the phase variablshows ex-
(R(t))~t*. If u=1, the process is called normal anduif pansion behavior characteristic of classicial diffusion. The
#1, the process is called anomalous. The anomalous diffudiffusion properties of the pendulum equation were studied
sion process can further be categorized into @imiean dif-  py Blackburn and Jensd1], where the diffusion was cal-
fusion whenu<1 and supeflinean diffusion or enhanced culated as a function of. It was found by them that the
diffusion whenu>1. See Refs[1-4] for an exhaustive re- diffusion coefficient exhibits a power-law divergence,
view of normal and anomalous diffusion processes. Anomaty— y | =12 outside a periodic window of. Popesciet al.
lous diffusion is of basic interest in several problems such ag22] considered the systeifl) with disorder substrate and
mass transport and mixing in hydrodynamic floWs-7],  p=0. They added, quenched disordej( 6) to the right side
transport of magnetic field lines, and heat and particles irpf Eq. (1), wherea is the amount of quenched disorder and

fusion and space plasmg&—10 to name only a few. Of late  the random variablé(6) e[ — 1,1] obeys
there has been a growing interest in the diffusion properties

of chaotic systems. There have been several studies devoted (£(0))=0, (&(0)§(0'))=05(0,0"). 2
to normal and anomalous diffusion in maps and continuous
time system$11-13. Anomalous diffusion is found to occur They found that the diffusion coefficient increases with the
in several conservative systems, especially, when the domastrength of disordew, when « is small. However, when
of chaotic motion has accelerator modes or when stochastidisorder strength is very high, the diffusion coefficient be-
layers form near the unperturbed separatrix. For example, tomes very small. More recently, Yevtushenko, Flach, and
has been found in a model of electrostatic turbulent plasm&ichter[23] reported on the dependence of mean velocity on
[14] and in certain Hamiltonian systems and mgp5-20. the phase of the periodic driving force in the undamped sys-
In these systems, an orbit gets trapped in the acceleratéem. Directed current due to broken time-space symmetry
modes resulting in ballistic motion during these trappedwas also reported in Rdi25]. In the present paper, we study
times and moves chaotically otherwise. The combination othe diffusion in Eq.(1) with (i) p=0, y=0 and(ii) p=0,
this regular and chaotic motion leads to anomaléusn-  y#0. We focus on the effect of the parametersWhen y
Brownian diffusion. In this paper, we shall focus attention =0 and p=0, the system exhibits normal and anomalous
on diffusion in the driven damped and undamped classicadiffusion depending upon the values foéind w. The diffu-
pendulum equation. The driven damped pendulum is a classion process is characterized using various statistical descrip-
sical nonlinear system that is used to model many physicabrs. We also investigate the damped pendulum by setting
phenomena such as charge-density wave transport and radje=0.2, f=1.2, p=0, and varyingw. Diffusion, when it
frequency driven Josephson junction. Recently, diffusioroccurs is found to be normal in the damped system. We
process has been studied in a damped and periodically drivgsresent results on the variation of diffusion coefficient near
pendulum[21-23. Superdiffusion in an equivalent equation two bifurcation pointsw; andw, shown in Fig. 5. We show
was studied by Latorat al.[24]. The equation of motion of power-law divergence of the diffusion coefficient as the con-
a sinusoidally forced, damped pendulum with constant biagrol parameterw is varied near these bifurcations. We also
is given by study the diffusion behavior near a bifurcation leading to the
) . crisis induced intermittency. Finally, we study the effect of
0+ y0+sinf=f sin(wt) +p. (1)  the constant biap on the dynamical evolution.
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FIG. 1. Poincaremap of Eq.
(1) for p=0, y=0, and f=1.2.
(8 @=0.8.(b) ®=0.1. The points
on the Poincarenap are sampled
once every drive period with
phase ¢=0 for (@ and ¢
=0.250 for (b).

II. DIFFUSION IN THE CONSERVATIVE SYSTEM <92(n)>~n,u' n—oo. (3
(y=0,p=0)

For f=y=p=0, the system has two equilibrium points: For = 0.8, the exponeng is found to be 1.6, which implies
(6*,6%)=(0,0), which is an elliptic point and the joining of that the diffusion process is anomalous, and superlinear. For
the two branches of the seperatrix at 4,0), which is a @=0.1, the exponen is evaluated by a least squares fit for
hyperbolic point. For nonzero values of these parameters, i~ 200- x is unity and hence asymptotically the diffusion is
is not possible to obtain analytical solutions and one ig"ormal. A simple way to check whether a one-dimensional
forced to take recourse to the numerical evaluation of thé@ndom variablef with zero mean is Gaussian or not is to
trajectories. For the generation of the numerical trajectories §2/culate the magnitude of the fourth cumulant
fourth-order fixed time step Runge-Kutta integrator was
used. All the calculations were carried out in double preci- C4=(04>—3( 92>2_ (4)
sion arithmetic. An optimum choice of 100 time steps per
drive cycle was found to give satisfactory results for calcu- @
lating statistical quantities such as the diffusion coefficient. 1000
This choice of the time step was used in the case of damped '..f.ﬂ"‘*'k._.
system. For the undamped system, however, we used a sob [ i
smaller value, 5000 time steps per drive cy(2é]. Figure VALY
1(a) shows the Poincarenap for y=0, p=0, f=1.2, and
w=0.8. The Poincarenap is plotted by sampling the trajec-
tory once per drive cycle. In Fig.(8), orbits for three differ- 500l
ent initial conditions are shown. The upper and lower orbits A
are quasiperiodic, while the middle one is chaotic. The ac- ! a'va
celerator islands are clearly visible. The phase plot for the -1000¢ “\V'* '
casew=0.1 is shown in Fig. (b). The difference in the
nature of the distribution of points contribute to the different -1500 1 200 400 600 800 1000
diffusion behavior. Foro=0.8, both laminar and chaotic n
flows can be seen in Fig(®. When the trajectory spends a (b)
long duration of time on a stochastic layer the phase velocity 3

0 appears laminar. In Fig.(B), in the laminar regions where

6 is nearly constant, the phase varialsléncreases or de-
creases linearly. After escape from a stochastic layer the tra-
jectory wanders chaotically. In the bursting region, the phase

velocity 6 rapidly oscillates. The combination of these two
motions lead to anomalous diffusion. To identify and charac-
terize the nature of diffusion in the system Ei), we cal-
culated various statistical quantities. The mean-square dis-
placement( 6?(n)), was calculated by averaging over 1520
initial conditions chosen around the origim0,6=0) of -6
the phase space. Figure 3 depicts the variatiofpéfn)) as

a function ofn, the number of drive cycles, fan=0.8 and

0 200 400 600 800 1000
n

w=0.1. The data points for both the values ©fin the FIG. 2. Phase variables (a) and 6 (b) for a trajectory started
log-log plot asymptotically fall on straight lines implying the near the origin foro=0.8, y=0, p=0,_andf=1.2. The linear
relation motion of # during the laminar phases @fis evident.
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(a) (b)
10 10

FIG. 3. Diffusion for the case
of Fig. 1. (@) @=0.8. The diffu-
sion is anomalous withu=1.6.
(b) w=0.1. The diffusion is nor-
mal asymptotically. The dashed
line is the least squares fit far
between 500 and 1000. The expo-
nentw is nearly unity.
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For Gaussian proces€,, and other higher-order cumulants external force. The periodic orbits of the systémthe phase
vanish. Deviation from Gaussian process can be measured Ryriable 6) are either running or nonrunning, depending on

evaluating the kurtosis the value of the parameter. A typical running orbit shows
expansion of the phase varial#levith time, while a nonrun-
(6% ning orbit does not.
- (622 ) First, we consider chaotic diffusion resulting from the bi-

furcation of a running periodic orbit. Figure 5 shows the
bifurcation diagram fow € (0.471,0.477). Aso is decreased
there is a sequence of period doubling bifurcations. At the
accumulation point of these bifurcations;=0.4735. . .,

When the diffusion is Gaussian the value of kurtosis is ex
pected to be nearly 3. Figure 4 shows the variatiot gbr

»w=0.1 andw=0.8, respectively. Fon=0.1, K is found to ) . .
be nearly 3 for large confirming normal diffusion. For the attractor suddenly widens. The region to the left of this

=0.8, K diverges rapidly withn implying deviation from poir?t .is interesting_. A typical.trajecto_ry in t.his region of
Gaussian statistics. exhibits a succession of laminar regionsénnterrupted by
chaotic bursts. In fact, there are two laminar regions and in
each of these regions, the phase variabig linear. While on
one of thesd increases, on the othérdecreases. During the
chaotic bursts, the net displacement is small. Figur@s 6
In this section, we consider the syst¢hy in the presence and @b) show the laminar and chaotic regions far
of damping withp=0, f=1.2, andy=0.2, and study the =0.4731475, which is close te,. Figure Ga) shows the
diffusion process by varying the angular frequereyf the  variation of  on the Poincarsurface. The evolution of on

Ill. DIFFUSION IN THE DAMPED AND PERIODICALLY
DRIVEN SYSTEM (p=0,y#0)

10 1 I 1 ! I
0 1000 2000 3000 4000 5000 6000

n

FIG. 4. Kurtosis for the undamped driven pendulum. kor 0.8 exhibiting anolamous diffusio diverges(dotted ling, and for w
=0.1 exhibiting normal diffusiorK is nearly 3(solid line).
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FIG. 5. Bifurcation diagram of the systerfl) for we(0.471,0.477). The period 1 orbit suddenly becomes chaotiaw at

=0.47657 .... There is a sequence of period doubling bifurcations sasis decreased. The attractor suddenly widenswat
=0.47356....
the Poincaresection is shown in Fig. (6). The correspon- =0.4928848 ..., wefound the value of the exponent to be

dence between the laminar regionsla)fn F|g 6(b) and the 0.48. Blackburn and Jenséill] also found that the exponent

ballistic motion of ¢ in Fig. 6@) is clear. The diffusion co- s 1/2 in their studies. o o
efficient D is defined by We studied the variation of diffusion coefficient just after

another type of bifurcation called the crisis induced intermit-

1, tent switching between two chaotic orbits. This type of bi-
D= “mﬁw (). (6)  furcation was studied by Grebogt al.[27] in the system
n—oo
D is calculated by evolving 2600 trajectories with initial con- 6+ y6+sino=f cog wt). )

ditions around the origin for 2000 drive cycles in the region

w e (0.47125,0.473 14). The nature of diffusion is found to| thjs type of intermittency, there exist two attractors, one
be normal. Fom close to the critical points, longer trajecto- with <0 on the average and another with=0 on the

gﬁgﬁ;iggﬁﬂgﬂ fe?/rotljl?tiS:r:Vcl)?%hlomianuusg?g. dli:sl,g?(aﬁ %;(/erage with their respective basins of attraction. That the
L guare displaCementl;«ience of one attractor implies the existence of the other
for w=0.47314. The contribution to the diffusion is prima- follows from the symmetry of the equation. L&t be the
rily due to the balli_stic motion i_n_the laminar _regipns. The bifurcation point. Forf <f, the orbitis in oné of the attrac-
ﬁgir:;tr%g'g;;igi?gtgbgéivgglé \,T'Q:%?gﬁnzgewﬁfgsﬁfcaoeﬁ t_ors depe_nding on which basin of attractio_n the initial c_:ondi-
with a=0.492 and is shown in Fig.(d). AS w is increlased tion was in. Afterf cros_ses‘c, the two basins of attractions
: Y merge and form a single large attractor. The orbit then

through the periodic window, the mopon .becomes Suqdem%witches between the two attractors chaotically. That is, the
chaotic atw,=0.47657 . ... After this bifurcation point, system exhibits

the behavior is somewhat similar to that found for Fig. 6.
There are two distinct laminar regions in which the motion is
ballistic. The laminar regions and chaotic bursts are shown in  (chao$;—(chao$,— (chaos;—(chaog,— - - -

Figs. 8§a and 8b). Normal diffusion atw=0.47658 is

shown in Fig. 9a) and the power-law divergence of the dif- transition[27]. They showed that the mean time between
fusion coefficient in the regionw e (0.47658,0.476 70) is switching as a function of —f. is power law, where the
shown in Fig. @b). The exponenty, in this case is 0.483. exponent is given in terms of the expanding and contracting
The value of the exponent seems to be 1/2. Several similagigenvalues. We found that the diffusion is normal and de-
bifurcations lead to divergence of the diffusion coefficienttermined the diffusion coefficient for this systerm 1.0,
with the same exponent. For example, for0.15,f=1.2, y=0.22,p=0, f.=2.646442) as a function df—f. [28].
p=0, andw=0.4898% ..., wefound the value of the ex- The diffusion coefficient was calculated in the regidn
ponent to be 0.526. At the same parameters but with e(2.64653,2.69). The divergence of the diffusion coeffi-
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-35 . . . n
] 500 1000 1500 2000
n FIG. 8. Intermittency near the bifurcation point ab

=0.47651 . ... (a) The evolution of the phase variabteon the
Poincaresurface atw=0.476572.(b) The phase velocity on the
Poincaresurface. The linear evolution and small chaotic oscillations
The linear evolution and small chaotic oscillationséin (a) cor- of ¢ in (@ correspond to the laminar regions and the burst regions,

. . . . respectively, inb). The linearly increasing and decreasing values of
respond to the laminar regions and the burst regions, respectively, in o ; . ;
(). # correspond to the two distinct laminar regions as see)in

FIG. 6. Intermittency near the bifurcation at=0.4735. ...
(a) The evolution of the phase variabfeon the Poincarsurface at
©=0.4731475.(b) The phase velocity on the Poincasarface.

cient is power law with the exponent 0.699. Intermittency®1- The trajectory spends long time intervals in the regions
and divergence of the diffusion coefficient for this case arewhere #(n) is nearly constant on the Poincareap, akin to
shown in Fig. 10. the laminar regions, interrupted by bursts. In these regions,
We wish to find a possible explanation for the value of thethe trajectory is linear as seen in Figap In the bursting
exponent 1/2 for the diffusion near the bifurcation valuesregions ¢ fluctuates rapidly giving rise to small amplitude
w; ,. Figure 6 showsd(n), 6(n) for =0.4731475 near motion of §. Consequently, the displacement in these regions

x 10° (a) (o)
10 4500 5
4000 | FIG. 7. (8 Mean-square dis-
8} a500 | placement showing normal diffu-
sion for ®=0.473 14.(b) Diffu-
3000} . -
sl sion  coefficient near the
o a 201 bifurcation point showing power-
Vol 2000} law behavior for o
1500 €(0.47125,0.473 14). Circles
ol 1000 } 0 /2 represent the numerically evalu-
500 - ated values and the solid line is
o ) ) ) 0 ° ) the least squares fit.
(] 500 1000 1500 2000 0.471 0.472 0.473
n [}
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x 10° (a) (b)
15

700 FIG. 9. (8 Mean-square dis-

placement showing normal diffu-

o sion for w=0.476 58.(b) The dif-

500 . —_
tﬁ a fusion coefficient near the
v bifurcation showing power law.
5f 300 Circles represent numerically
evaluated values and the solid line
is the least squares fit.
0 100
i} 500 1000 1500 2000 0.47665 0.4766 0.47665 0.4767
n (0]
is much smaller as compared to those in the laminar regions. (92(n)>: N<§2), 9)

When o is decreased, the average length of the regions

whered is laminar decreases and diffusion slows down. wewhere(¢?) is the mean-square displacement per step. In the
have found numerically that the average laminar length nedaminar regionsg is nearly constant on the Poincamerface.
the critical point w; exhibits power-law divergencél)  Figure 6 shows the two laminar regions and the correspond-
~|wy1— w|~* with a=0.437 as seen in Fig. (). The lami-  ing linear motion ofé. The two laminar regions are sym-
nar lengthl is found to be random with exponential distribu- Metrical leading to zero average velocity, which is not evi-
tion see Fig. 14a). The distribution is obtained by collecting dent in the figure due to the choice of the Poincsueface.
successive laminar lengths for a long orbit and binning thenkience.¢i~al;, {~a?l?. The quantitya represents the av-
appropriately. The log-linear plot exhibiting linear behavior €rage velocity in the laminar regions and can take values of
is taken as the signature of the exponential distribution. ~ the same magnitude and opposite signs in the two different
Let us consider the process close to the critical point. Th&89ions. The problem of determining the mean-square dis-
evolution of @ as a function of time is dominated by laminar Placement, therefore, reduces to determining the mean-

regions interrupted by chaotic bursts. The change during square laminar lengif@9). Since, the laminar length has an

a chaotic burst is small compared to that during a Iamimﬂgxponential distribution, the probability for finding laminar
) . . . regions of length betwednand! +dl can then be written as
region. Hence, neglecting the small displacements in th

burst regions, the net displacement @fin time n can be ?1/<I))exp(—ll(l>), where(l) is the average laminar length,

written as a sum of the displacementsin the laminar re- The factor 1{I) provides the correct normalization. The
: P 0 mean-square laminar length can be then written as
gions of lengthl; ,

<|2>_<|1>f:|2exp(—<:>)d|_2<|>2. (10

Hence,(£?)~(12)=2(1)2. In time n, the number of laminar
lengths isN=n/(l). Substituting this in Eq(9), we get

N
"(“):El &),

whereN is the number of laminar regions between time zero (6%(n))~{I)n. (11)
andn. ¢; are the independent random displacements that take

positive and negative values with equal probability. TheThe above implies that the diffusion coefficient is propor-
mean-square displaceme#?) can, therefore, be written as tional to the mean laminar length.

@ x 10 () o .
0 . . . 7 . . . . FIG. 10. Crisis induced inter-
‘ | o mittency in the damped driven
R e e " 6F
| W o pendulum for the parameters
51 =1, y=0.22, andp=0. (a) Inter-
! mittency for f=2.655. (b) Diffu-
a sion coefficient near the bifurca-
3t tion point showing power-law
ol behavior. D is calculated in the
range f=(2.646 53,2.69). Circles
1f represent the numerically evalu-
) ) i o : o o o ated values and the solid line is
0 1000 2000 3000 4000 264 265 2866 267 268 269 the least squares fit.
n [
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(a) (b)

distribution
average laminar length
8 8 8583833 8 8

L]
=
[=]

L ) ) 0 . .
0 50 100 150 200 0.471 0.472 0473
laminar length [}

FIG. 11. Distribution(a) and divergencgb) of laminar lengths for the damped driven pendulum with 0, f=1.2, andy=0.2. The
distribution is obtained by binning 2185 laminar lengths in bins of width 5 drive cycles after removing “laminar” regions of very small
lengths. The linearity on the log-linear plot indicates that the distribution is exponential. The divergence of the laminar lengths is power law
with exponent 0.437.

The mean laminar length exhibits power-law divergence In the case of the crisis induced intermittency, the average
near the critical points of» as shown in Fig. (b) and Fig.  laminar length exhibits power-law divergence with exponent
9(b). We have observed numerically that the exponerin 0.702[27]. We have found that the laminar length distribu-
the power law is nearly 1/2. In this connection we add that irtion is exponential. As in the previous case, by invoking the
many systems near such bifurcation points the mean value sandom walk argument, it is reasonable to expect similar
state variables and maximal Lyapunov exponent have showdivergence for the diffusion coefficient.
similar power-law dependence on a control parameter Now, we consider the pendulum equatiti) with bias,
[30,31]. This also is probably the reason for the power-lawp#0. For the choice of parameterfs=1.2, y=0.2, w
divergence(with exponent 1/2) observed by Blackburn and =0.4769, andp=0, the system is periodic. F@r+#0, the
Jensenj21]. If we are away from the critical points, the bal- system loses its periodicity. The resulting bifurcation dia-
listic motion in the laminar regions and the motion in the gram is shown in Fig. 12. The system is alternately chaotic
chaotic burst regions become comparable and the above raand periodic with increasing, chaoticity emerging through
dom walk arguments do not hold good any more. a series of period doubling bifurcations. The phase velocity

FIG. 12. Bifurcation diagram
for the damped driven pendulum
with bias,w=0.4769,f=1.2, and
v=0.2. The periodic state that ex-
ists for p=0 loses its periodicity
and becomes chaotic. Subse-
quently for higher values ob,
there is a sequence of chaotic and
periodic regions. The chaotic re-
gion contain a single intermittent
region where the motion is nearly
linear.

do/dt

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
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(a) bursts is negligible as seen in Fig. 13. The effect of the bias
7000 T T - - on the intermittent region is shown in Fig. 14. Ad
soool =0.47311,y=0.2,f=1.2, andp=0, there exist two inter-
mittent regions as seen in Fig. (& When a small biap
5000 | ] =0.0005 is added, one of the two intermittent regions is
destroyed as seen in Fig. (b4 Which of the two intermit-
4000 | T tent regions gets destroyed depends on the sign of thepbias
@ s000 | Since, there exists only one intermittent region the motion is
nearly ballistic.
2000 |
1000 1 IV. SUMMARY AND CONCLUSION
00 200 200 500 200 1000 The dnven_ damped pendulum.|s a classic example of a
n nonlinear oscillator, whose behavior represents a large class
of systems. We have studied diffusion process in this system
.5 (b) . . . . and found both normal and anomalous diffusion. Divergence
- of the diffusion coefficient is found near certain bifurcation
1 . ’ ) 1 points of w. The diffusion coefficient near these points are
05} . o e shown to obey a power-law divegence with the exponent 1/2.
ol ; T : n Near a crisis induced intermittency also power-law diver-

e D gence of the diffusion coefficient is found. It has been shown
T : ) that the large values of the diffusion coefficients near the
bifurcation points is due to the existence of two intermittent
regions. Further, the average lengths of these intermittent
regions exhibit power-law divergence. It has been possible to
show through random walk arguments that the divergence of
the diffusion coefficient is similar to the divergence of the

. . s - average laminar lengths. The effect of the intermittent re-

0 200 400 600 800 1000 gions in the case of the undamped pendulum is different. In
this case, the contribution to the diffusion is due to the cha-
FIG. 13. Phase variables for the pendulum with bjas Otic oscillations. The presence of the accelerator modes en-
=0.1188,w=0.4769,f=1.2, andy=0.2.(a) The motion is nearly hances the diffusion leading to the anomalous behavior. In
linear. (b)  showing a single intermittent region causing the nearlythe damped case, where two intermittent regions exist, how-
linear behavior in(a). ever, the contribution due to the chaotic oscillations is small
as compared to that by the intermittent regions leading to

exhibits intermittency in the chaotic regions. In contrast tonormal diffusion. In the case with bias near a periodic win-
the intermittency shown earlier, for this case, there seems tdow, the periodicity is broken leading to a sequence of peri-
be a single dominant intermittent region where the motion iodic and chaotic behavior as the bias is varied. In these
nearly linear. The contribution to the motion during the cases, however, a single intermittent region exists leading to

(a) (b)

282 Ll T

-3 -3
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
n n

FIG. 14. Effect of bias on the intermittency 1.2, «=0.47311, andy=0.2. The Poincarglots are generated for a phase shift of
¢=0.3w to accentuate the two intermittent regiof®. For p=0, the two intermittent regions exist similar to that shown in Figlbé.For
p=0.0005, one of the intermittent regions is destroyed. Which of the two intermittent regions gets destroyed depends on the sign of the bias.
The consequent motion of the phase variablis nearly linear and not diffusive.
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nearly linear motion, which may be contrasted with the case
without bias, where two possibly symmetric intermittent re-
gions exist leading to the appearance of normal diffusion.

PHYSICAL REVIEW E65 046214

ACKNOWLEDGMENT

The work of S.R. forms part of a research project spon-

The effect of bias seems to destroy one of the two intermitsored by the Department of Science and Technology, Gov-

tent regions producing nearly ballistic motion.

ernment of India.

[1] J. Haus and K.W. Kehr, Phys. Relb0, 263 (1987.
[2] J3.P. Bouchaud and A. Georges, Phys. Regh 127 (1990.
[3] Anomalous Diffusion From Basics to Applicatioreslited by
A. Pekalski and K. Sznajd-Weron, Lecture Notes in Physics
Vol. 519 (Springer, New York, 1998
[4] D.H. Zanette, e-print cond-mat/9905064.
[5] J.B. Weiss and E. Knobloch, Phys. Rev48, 2579(1989.
[6] E. Weeks, J.S. Urbach, and H. Swinney, Physic®™ 291
(1996.
[7] D. del Castillo-Negrete, Phys. Fluid®, 576 (1998.
[8] R. Balescu, Phys. Rev. &1, 4807(1995.
[9] G. Zimbardo and P. Veltri, Phys. Rev.H, 1412(1995.
[10] F.D. Angelo and R. Paccagnella, Phys. Plasn3as2353
(1996.
[11] P. Castiglione, A. Mazzino, and P. Muratore-Ginanneschi,
Physica A280, 60 (2000.
[12] S. Rajasekar and V. Chinnathambi, Physic28®, 137 (2000.
[13] Hsen-Che Tseng, Peng-Ru Huang, Huang-Jung Chen, and
Chin-Kun Hu, Physica 281, 323(2000.
[14] M. Pettini, A. Vulpiani, J.H. Misguich, M. DeLeener, J. Orban,
and R. Balescu, Phys. Rev.38, 344(1988.
[15] G.M. Zaslavsky, M. Edelman, and B.A. Niyazov, Chap459
(1997.
[16] A.A. Chernikov, B.A. Petrovichev, A.V. Rogalsky, R.N.
Sagdeev, and G.M. Zaslavsky, Phys. Lettl4d, 127 (1990.
[17] D.K. Chaikovsky and G.M. Zaslavsky, Chabs143(1991J).
[18] R. Ishizaki and H. Mori, Prog. Theor. Phyg7, 201 (1997).
[19] S. Benkadda, S. Kassibrakis, R.B. White, and G.M. Zaslavsky,
Phys. Rev. B55, 4909(1997.
[20] S.S. Abdullaev and K.H. Spatschek, Phys. Rewd:= R6287
(1999.

046214-9

[21] J.A. Blackburn and N. Gronbech-Jensen, Phys. Re%3E

3068(1996.

[22] M.N. Popescu, Y. Braiman, F. Family, and H.G.E. Hentschel,

Phys. Rev. E58, R4057(1998.

[23] O. Yevtushenko, S. Flach, and K. Richter, Phys. ReW1E

7215(2000.

[24] V. Latora, A. Rapisarda, and S. Ruffo, Phys. Rev. L&8,

2104(1999.

[25] S. Flach, O. Yevtushenko, and Y. Zolotaryuk, Phys. Rev. Lett.

84, 2358(2000.

[26] The numerical scheme was also tested against the analytical

solution wherever possible. Far=0, y=0, the absolute error
was less than 8B-6 over 1000 drive cycles when a drive
cycle was divided into 100 time steps. Fgr0 andw=0.1,

the absolute error was less than 0.013 for 5000 time steps per
drive cycle and less than 0.15 for 100 time steps per drive
cycle. The error is found to be maximum near the zeros of the
solution and least near their extrema. In all cases, the numeri-
cally evaluated solution “shadows” the analytical solution.

[27] C. Grebogi, E. Ott, F. Romeiras, and J.A. Yorke, Phys. Rev. A

36, 5365(1987).

[28] The mean time between switching being quite large for the

crisis induced intermittency, close to the bifurcation point
longer orbit lengths are required to find normal diffusion. The
small difference in the bifurcation point between what we have
reported and that of Ref27] may be because of the same

reason. This will result in a small change in the exponent.

[29] F. Reif, Fundamentals of Statistical and Thermal Physics

(McGraw-Hill, New York, 1965.

[30] V. Mehra and R. Ramaswamy, Phys. Re\6E 3420(1996.
[31] H.L.D. De, S. Cavalcante, and J.R. Rios Leite, Dyn. Stab. Syst.

15, 35(2000; Physica A283 125(2000.



